行业空间预测:2020 年回收量接近 40 Gwh,2022 年市场规模突破百亿元。受益新能源车行业确定性高增长,国内动力电池出货自 2014 年起进入爆发期,2014/2015/2016 年分别为 5.9/17.0/30.5GWh,2017 年实现出货 39.2 GWh,预计未来三年 CAGR 仍有望保持 30%以上。一般而言,当电池容量衰减到初始容量的 60%-80%,便达到设计的有效使用寿命,需进行替换。乘用车电池的有效寿命一般为 4-6 年,而电动商用车由于日行驶里程长、充电频次多,电池有效寿命仅约 3 年。我们预测 2020 年动力电池回收量将接近 40 Gwh,预计 2022 年动力电池回收量将接近70Gwh(以含金属价值量计,市场规模有望突破百亿元)。
动力电池回收必要性日益凸显,体现在环保要求、经济效益、资源稀缺、政策规范四方面。动力电池回收的必要性体现在三方面:1.环保角度,废旧锂离子电池含有的重金属化合物、LiPF6、苯类等难以降解,可能造成严重污染。2.经济效益角度,下游需求的持续高速增长导致钴供需格局转为短缺,钴价将高位运行并具备进一步上行空间。另外参考家电回收的补贴模式,动力电池回收未来也有可能引入基金补贴,一旦落实对行业是重大利好。3.资源角度,我国钴镍储量仅占全球 1%、3.6%,全球的钴矿上游资源主要被嘉能可、洛阳钼业、欧亚资源等跨国矿企控制,仅极少数国内企业收购刚果优质钴矿,钴资源成为动力电池及上游正极材料厂家的“必争之地”。4.政策规范:《拆解规范》《余能检测》《规格尺寸》《编码规则》,四大规范出台建立国家标准体系,有助行业集中化、规范化发展。
商业模式:先梯次利用后再生利用,以电池材料厂为核心构建包括整车厂、电池厂在内的合作生态。为提高资源利用率,废旧动力电池的利用应遵循先梯级利用后再生利用的原则。目前我国废旧电池梯级利用主要为示范工程形式,典型的三个项目围绕储能领域。我们认为,回收渠道是电池回收行业的核心竞争要素之一,而整车厂掌握与消费者联系密切的 4S 店,在建立回收渠道网络方面具备天然优势。2016 年 12 月,工信部发布《电池回收管理暂行办法》(征求意见稿),提出落实生产者责任延伸制度,亦从政策层面明确了整车厂在回收渠道上的主导地位。我们看好具备回收技术和先发布局优势的大型正极材料厂商,通过建立与整车厂、电池厂的合作网络,整车厂负责构建回收渠道,正极材料厂商负责拆解、提取金属后再造电池材料,然后供应给电池厂,形成多方合作的循环生态。
投资策略:预计到 2020 年回收市场将进入大规模放量阶段,回收量将超过 20Gwh,2022 年动力电池回收量将达到 53Gwh(以含金属价值量计,市场规模将突破百亿元)。随着回收需求的爆发,政策的规范以及行业龙头的不断布局,动力电池回收的市场即将打开,看好具备先发布局优势以及回收渠道优势的电池材料厂商,通过与整车厂、电池厂合作,打造电池材料再生利用的循环产业链。
电池是新能源汽车产业链的关键环节,行业持续高增长。伴随电动汽车于 2011 年在我国起步,动力电池行业步入发展初期,年出货量低于 1GWh 且仅维持小幅增长;随着 2014年补贴政策推出,行业进入爆发式发展期,动力电池出货量从 2014年的5.9GWh攀升至 2015年的 17.0Gwh,同比增长接近 2 倍。2016 年中国动力电池出货量达 30.5GWh,同比上年增80%。总体而言,作为新能源车产业链的关键环节,动力电池行业将长期受益新能源汽车销量和渗透率增长。根据高工锂电,2017 年动力电池累计出货 39.2GWh,同增 30%以上。结合新能源车产销预测,我们判断 2018~2020 年动力电池将延续高增长,CAGR 约 30%。
自 2014 年之后,动力电池装机进入爆发增长期,动力电池的回收问题也逐渐提上日程。一般家用乘用车以及电动客车电池会在 5 年左右退役,出租车和物流车动力电池一般 2 年就会退役。据此判断,从 2018 年开始,我国将会有大量的动力电池进入报废期。
动力电池的回收量不仅与每年新能源汽车产量密切相关,还与电动汽车的类型、占比,电池的类型、占比、技术进步以及不同类型电池的使用寿命等相关。目前行业内的平均标准和经验数值如下,可作为预测动力电池使用寿命及回收量的假设:
1)根据经验估计,各类车型年均行驶公里数为家用车 2 万 km、出租车 10 万 km、客车 7.5 万 km、物流车 15 万 km;家用车与出租车比例为 100:1。
3)三元锂电池以及磷酸铁锂电池使用情况为:预计 80%的乘用车及物流车使用三元锂电池,而 70%的客车使用磷酸铁锂电池三元锂电池的极限循环充电次数为 500 次,磷酸铁锂电池的极限循环充电次数为 2000 次。
根据上述假设,乘用车电池平均寿命 5 年,出租车和物流车平均 2 年,电动客车电池寿命平均 5 年。根据我们的测算,2018 年开始我国新能源汽车动力电池将会进入大规模退役阶段,退役动力锂电池达到 11.99GWh,其中三元电池 8.85GWh,磷酸铁锂电池3.14GWh。2020 年动力电池回收量将接近 25.57 Gwh(折合成 18.57 万吨),2022 年动力电池回收量将接近 45.80Gwh(折合成 30.98 吨),2018~2022 年年均复合增长率达 59.10%以上,以含金属价值量计,2022 年国内动力电池回收市场规模将突破百亿元。
铅酸电池出货稳定增长,回收市场规模高达 400 亿元。近年来我国铅酸电池销量维持稳定增长态势。根据全国铅酸蓄电池行业协会,2016 年我国废铅蓄电池产生量高达 400 万吨,其中铅含量约 280 万吨;按照 2016 年我国现货铅的平均价格 1.45 万元/吨计算,2016年废铅蓄电池中铅的价值量高达 406 亿。
回收利用铅蓄电池含铅量高于铅矿,环保风险和生产成本均低于原生铅。铅蓄电池主要包括电解槽、电解液、隔板、正负极板等,其中正、负极板由栅板和活性物质构成,栅板一般为铅锑合金或其他铅基合金材料,活性物质为 PbO2、Pb 和 PbSO4。其中铅部件的重量约占电池总重量的 70% 左右。原生铅矿从开采提炼到金属,含铅量很低,矿里铅的比例仅30%左右,剩余的 70%都是废弃物,而铅酸蓄电池的含铅量高达 62%,绝大部分是可用的金属,且环保的风险比原生的小。与此同时,相比原生铅,再生铅的能耗仅为其 25.1%~31.4%,且生产成本低 38%,生产过程中的污染也更容易控制。
国内铅酸电池回收体系不断规范,望在技术和渠道两方面形成真正闭环。从技术层面,我国铅蓄电池的回收率最高可达 98%,几乎可以实现完全闭环利用;从渠道层面,我国铅蓄电池有组织的回收率达到 30%左右。根据中国产业信息网数据,我国再生铅占比总消费从2002 年的不到 20%达到 2015 年的接近 47.9%,再生铅逐步取代原生铅成为我国铅的主要来源。而目前美国、德国等西方发达国家再生铅消费比例均超过 80%。随着政策监管的持续加码以及铅蓄电池生产者责任回收制度的实施推行,我国铅蓄电池的回收利用体系将不断规范,正规渠道的回收率预计大幅提升,有望在技术和渠道两方面形成真正的回收闭环。
环保角度:动力电池含大量重金属化合物,严重威胁环境废旧动力电池含大量重金属和有机物,严重威胁环境和人类的健康。虽然废旧锂离子电池中不包含干电池和铅酸电池中的汞、镉、铅等毒害性较大的重金属元素,但是其含有重金属化合物、六氟磷酸锂(LiPF6)、苯类、酯类化合物,难以被微生物降解。废旧锂离子电池一旦进入环境中,电池中的重金属离子、有机物、碳粉尘、氟化物等将可能造成严重的环境污染。其中正极材料中的重金属镍、钴、锰污染使环境的 pH 升高,污染水体和土壤;负极材料中的碳材和石墨会引发粉尘污染,嵌锂也会使环境的 pH 升高;电解质及其转化物,如 LiPF6、LiBF4、LiAsF6、HF、P2O5、B2O3 等,引发氟污染改变环境酸碱度,产生的有毒气体污染空气并经由皮肤、呼吸对人体造成刺激;电解质溶剂及其分解和水解产物会引发醛、酮、甲醇等有机物污染;隔膜材料会造成有机物污染;粘结剂受热分解产生 HF 和氟污染。这些都会严重威胁环境和人类的健康。
动力电池尤其是三元电池中镍、钴、锂等贵金属含量高,资源稀缺且价格不断上涨。三元材料一般分为两类:NCM(镍钴锰)和 NCA(镍钴铝),以最常见的 NCM111 为例,镍、钴、锰的含量分别占 12%、3%及 5%,,具有较高的回收再利用价值。磷酸铁锂电池虽然不包含钴、镍等稀有金属,但锂含量达到 1.10%,显著高于我国开发利用的锂矿(锂矿山中Li2O 平均品位为 0.8%~1.4%,对应到锂含量仅 0.4%-0.7%)。随着新能源汽车的推广,电池材料需求增长,在供给紧张的共同作用下对应金属材料的价格也经历了暴涨。电池级碳酸锂经历 2015-2016 年的暴涨,目前出厂价格接近 16 万元/吨,仍然处于高位;四氧化三钴价格从 2016 年的不到 150 元/千克涨至近 400 元/千克;硫酸镍价格也从 2016 年 7 月份的2.2 万元/吨上涨至 2.5 万元/吨。
我国钴镍储量仅占全球 1%、3.6%,资源储量和需求不匹配。镍钴原料供应保障是电池正极材料(前驱体)厂商的关键竞争力,而我国钴镍储量仅占全球 1%、3.6%,与日益增长的需求严重不匹配。根据美国地质调查局(USGS)数据,2016 年全球钴矿储量约 700 万吨,其中刚果(金)储量高达 340 万吨,占全球总储量的 48.6%。此外,澳大利亚(100 万吨,14.3%)、古巴(50 万吨,7.1%)、赞比亚(27 万吨,3.9%)、加拿大(27 万吨,3.9%)等国储量也较丰富。2016 年中国钴矿储量仅为 8 万吨,占比为 1.1%。相对钴而言,全球镍矿储量分布广泛,根据美国地质调查局(USGS)数据,2016 年全球镍矿储量共约 7800 万吨。全球镍矿供给来源较为集中,澳大利亚、巴西、俄罗斯占据储量前三,占比分别达 24.2%、12.8%、9.7%。中国镍矿储量达 250 万吨,占比 3.2%,全球排名第十。
全球的钴矿上游资源主要被嘉能可、洛阳钼业、欧亚资源等跨国矿企控制。嘉能可、洛阳钼业、欧亚资源三家矿业公司 2016 年钴矿产量占全球比例超过 40%。其中嘉能可旗下2016 年合计产量 2.83 万吨,占比达 23%。嘉能可旗下的 Mutanda 矿山拥有矿石量 4.39 亿吨,其中铜金属量 584 万吨,钴金属量 224 万吨,且矿石品位高,钴品位达 0.51%,是当前全球最优质,产量最大的钴矿山,2016 年生产钴矿 2.45 万吨,全球占比为 19.9%。洛阳钼业于 2016 年完成对 Tenke 矿山的收购后,目前已成为全球第二大钴矿生产商,年产量未来有望达 1.8 万吨。欧亚资源产能主要集中在 Boss Mining,2016 年产量约 6800 吨。
极少数国内企业收购刚果优质钴矿,部分公司布局再生钴资源。目前国内除了公司以再生钴镍资源为原料规模化生产钴镍粉体外,大多钴镍粉体生产厂商主要采用原矿为原料进行生产。其中极少数国内企业在资源价格低谷时期获得了海外你矿山或权益,其余大都从国内外购买钴镍原矿资源。由于国际市场钴镍价格和国外矿产资源出口政策变动频繁,导致国内大部分钴镍粉体企业原料来源不稳定。目前,国内上市的公司当中,只有华友钴业和洛阳钼业拥有已开发的钴资源矿山,其中洛阳钼业 TFM 的 Tenke 项目拥有钴储量 33 万吨,位列全球第二大钴矿。格林美通过提前布局电池回收,成功建立了用再生钴镍资源生产超细钴镍粉体的技术路线 多吨,占总产能近三成。
梯次利用:目前来看主要问题在于成本偏高,有望随梯次利用难度降低而凸显经济效益。根据中国电池联盟的数据,以一个 3MW*3h 的储能系统为例,在考虑投资成本、运营费用、充电成本、财务费用等因素之后,如采用梯次利用的动力锂电池作为储能系统电池,则系统的全生命周期成本在 1.29 元/kWh。而采用新生产的锂电池作为储能系统的电池,则系统的全生命周期成本在 0.71 元/kWh,铅炭电池、抽水蓄能的综合度电成本已接近 0.4 元/kWh。这主要是因为梯次利用的电池一致性差,不仅种类复杂,而且即使是同一型号的电池其使用寿命及状况也大相径庭,进行二次利用必须经过大量的检测、挑选、重组等环节,因此在现有的技术阶段梯次利用的成本较高。此外,在采购梯次利用相关设备的时候还需要增加一部分成本用于采购加强系统稳定性的设备。这些成本都是制约梯次动力电池在储能产业推广发展的重要因素。
再生利用:三元电池中金属纯度高于原矿,贵金属价格上涨趋势下回收效益显著。动力电池再生利用的成本主要包括:回收成本、拆解成本和冶炼成本。三元电池中金属纯度高于原矿,如果从精炼环节,动力电池回收成本高,特别是湿法工艺,成本更高;而如果从资源开始算起,动力电池回收在经济性上占有明显优势。磷酸铁锂电池中有价值的回收金属较少,拆解回收收益无法覆盖成本。
国家补贴还在酝酿中。在政策红利和巨大市场前景的吸引下,新加入动力电池回收的企业数量不断增加。中国动力电池回收市场的发展,目前可考虑走基金模式,与家电回收的补贴模式类似:厂家先交动力电池处理基金,之后返还补贴。目前,我国在废弃电器电子产品,如“四机一脑”及铅酸电池回收处理都有相应的财政补贴,但在对动力电池的回收处理上,还没有任何具体落实的财政补贴政策,预计未来一旦补贴政策落实,对行业则是重大利好。
地方政府回收补贴逐步落地。国家发布的动力电池回收政策主要是对动力电池回收的整体统筹规划,没有具体提出对动力电池回收的补贴政策。有的地方部门根据国家政策出台了有具体补贴措施的政策。2014 年 5 月 20 日,上海市出台《上海市鼓励购买和使用新能源汽车暂行办法》,对汽车生产厂商,每回收一套新能源汽车动力电池,给予 1000 元的补助。2016年 9 月 2 日,深圳市出台《深圳市 2016 年新能源汽车推广应用财政支持政策》,提出对于在深圳市备案销售新能源汽车的企业,包括本地生产企业和已备案的外地生产企业在深圳的法人销售企业,应按每千瓦时 20 元的标准专项计提动力电池回收处理资金。对按要求计提了动力电池回收处理资金的,按经审计确定的金额 50%对企业给予补贴,补贴资金应专项用于动力电池回收。2017 年 5 月 9 日,合肥市发布《合肥市人民政府办公厅关于调整新能源汽车推广应用政策的通知》,其在财政补助管理细则中提到电池回收奖励。对整车、电池生产企业建立废旧动力电池回收系统并回收利用的,按电池容量给予每千瓦时 10 元的奖励。
当前动力电池回收的各参与方大多数都处于示范项目或者微盈利经营状态,而形成规模效应、降低成本是当下动力电池回收的重要突破点。鉴于目前动力电池回收的规模和体量还都较小,随着行业规范性不断提升,以及龙头企业不断布局带动产业升级加速的规模效应,成本端压力会在未来行业逐渐发展的过程中消减。而磷酸铁锂电池中有价值的回收金属元素仅锂,再生利用收益无法覆盖成本,鉴于目前拆解回收工艺已经较为成熟,成本上已没有太大的下降空间,所以我们认为,随着未来梯次利用成本的下降,磷酸铁锂电池的回收利用价值有望在梯次利用中得到体现。
政府构建动力电池回收行业规范和标准体系进程加速。随着国家层面对于环境保护和资源利用的日趋重视,在动力电池回收产业即将爆发的背景下,为了建立真正的可循环可持续动力电池产业链,出台针对电池回收行业的具体国家标准势在必行。从 2016 年开始,国家相继出台了《新能源汽车废旧动力蓄电池综合利用行业规范条件》等政策文件。相比于以往,这些规范对于行业给出了具体明晰的评价和审查措施,为在动力电池回收领域构建起完善的国家标准体系迈出重要一步。
动力电池拆解回收的四大规范性文件提出了明确可操作的行业规范,建立了完善的动力电池回收行业国家标准体系:《车用动力电池回收利用拆解规范》对废旧动力电池回收利用的安全性、作业程序、存储和管理等方面进行了严格要求,有利于规范我国车用动力电池的回收利用及拆解、专业性技术及动力电池回收体系;《车用动力电池回收利用余能检测》规范了动力电池外观检查、极性检测、电压判别、充放电电流判别、余能测试等检测流程,为车用动力电池的余能检测提供了科学的评价依据;《汽车动力蓄电池编码规则》使动力电池具备唯一性和可识别性,全生命周期可追溯成为可能;《电动汽车用动力蓄电池产品规格尺寸》使动力电芯、模组和电池包的规格尺寸得以统一,降低动力电池的回收难度。
政策明确先梯级利用后再生利用的原则,提高资源利用率。工信部于 2018 年 2 月下发的《新能源汽车动力蓄电池回收利用管理暂行办法》(以下简称《暂行办法》)明确提出,废旧动力蓄电池的利用应遵循先梯级利用后再生利用的原则。梯级利用是将容量下降到 80%以下的车用动力电池进行改造,利用到储能(电网调峰调频、削峰填谷、风光储能、铁塔基站)及低速电动车等领域。资源再生利用是对已经报废的动力电池进行破碎、拆解和冶炼等,实现镍钴锂等资源的回收利用。《暂行办法》鼓励电池生产企业与综合利用企业合作,在保证安全可控前提下,按照先梯次利用后再生利用原则,对废旧动力蓄电池开展多层次、多用途的合理利用,降低综合能耗,提高能源利用效率,并保障不可利用残余物的环保处置。
梯次回收的动力电池主要应用领域是储能。从电动汽车上退役的动力电池通常具有初始容量 60%~80%的剩余容量,并且具有一定的使用寿命,其经过重新检测分析、筛选及电池单体配对成组,可用于其他运行工况相对良好、对电池性能要求较低的领域,例如谷电峰用、电力调频、可再生能源发电并网等需求。
目前动力电池的梯次利用在国内外均处于开始研发试点阶段,从海外梯次利用经验来看,Younicos 回收电池,用以建立组合分布式能源的虚拟电厂,并会参与一次调频市场的电价制定。该虚拟电厂利用锂电池将分布式能源收集、储存在高峰时段释放。日产汽车与住友商事株式会社在 2010 年 9 月合资成立了 4R Energy 株式会社,致力于实现日产聆风的锂电池二次商业化利用。公司回收日本和美国市场中聆风汽车的废旧电池,用于住宅和商业用的储能设备。同时,公司还将回收的废旧汽车蓄电池用于生产冷藏运输车冷藏室所需的电池。美国FreeWire 公司推出了 Mobi 充电器,是用于给电动汽车充电的移动电站。这款产品是由废旧电动车电池制成,能储存 48kwh 的电量,超过目前市面上大部分电动汽车的电池容量。德国博世集团利用宝马的 ActiveE 和 i3 纯电动汽车报废的电池建造了 2MW/2MWh 的大型光伏电站储能系统。
目前国内一些公司已经关注电池梯级利用,主要由汽车企业主导,联合电池企业和用户单位实施。我国在废旧电池梯级利用上,典型的三个示范工程主要围绕储能领域。我们判断,未来 3~5 年内磷酸铁锂电池将成为梯次利用的主要对象。
再生利用涉及复杂的化学及材料加工工艺。按照工艺次序,动力电池再生利用可以分为三个阶段。1)预处理:包括预防电、机械分离、热处理去除部分有机物、碱性溶解中和酸、溶剂溶解、手工拆解;2)材料分离:包括干法回收(又分为机械分选法和高温热解法)、湿法回收、生物回收);3)化学纯化:包括溶剂萃取、化学沉淀、电解等手段对高附加值的金属进行分离提纯和回收。对于三元电池,由高温热解回收工艺得到的最终产品通常包括两类:三元材料或其前驱体。三元材料中含有镍钴等有价金属,且含量高于原矿,一些大型回收企业会进一步采取湿法工艺提取三元材料中钴、镍等高价值重金属,然后作为再生产前驱体、正极材料的原料,如邦普循环、格林美等。对于磷酸铁锂电池,一些小规模的回收厂家主要先拆分电芯得到正、负极片,再破碎分选,回收铜、铝及电池材料。大型的锂回收企业如赣锋锂业则采取溶解废电池的方式分离得到含锂溶液,并且进一步通过电解法和纯碱压浸法得到碳酸锂和电池级氯化锂。
以比利时优美科(Umicore)为例,作为一家全球性的物质技术和回收集团,其三元正极材料出货量遥遥领先。根据 B3 数据预测,2016 年全球 NCM 三元正极材料出货量达 6.16吨,其中 1.86 万吨为优美科公司提供,占比高达 30.2%。早在 2012 年 8 月,丰田与优美科(Umicore)集团达成合作,对普锐斯普锐斯插电式混动车的锂离子电池进行回收。优美科通过将热解冶金处理和湿法冶金工艺结合,其采用的 UHT 炉处理能力达到每年 7000吨,是世界上最大的锂离子和镍氢电池专用回收设备之一。
国内公司中,格林美通过打造“电池回收—原料再造—材料再造—电池包再造—新能源汽车服务”新能源全生命周期循环价值链,牢牢把握稀缺钴资源,年回收利用钴资源 3000多吨(2016 年我国自产钴矿开采量仅 7700 吨),年回收的镍资源占中国镍资源开采量的 4%。
国家政策明确采用生产者责任延伸制度,生产商因占有多种资源等优势而承担回收的主要责任。针对动力电池的回收问题,国家陆续出台了一系列的电池回收政策。2016 年 1 月5 日发改委下发《电动汽车动力蓄电池回收利用技术政策(2015 年版)》,明确建立动力电池编码制度,建立可追溯体系,明确采用生产者责任延伸。2018 年 2 月 26 日,国家工信部发布由工信部、科技部、环境保护部、交通运输部、商务部、质检总局、能源局七部委联合印发关于《新能源汽车动力蓄电池回收利用管理暂行办法》的通知,此办法将于 2018 年 8 月1 日起正式实施,提出落实生产者责任延伸制度,汽车生产企业应建立动力蓄电池回收渠道、回收服务网点,负责收集废旧动力蓄电池,集中贮存并移交至合作企业;鼓励汽车生产企业、电池生产企业、报废汽车回收拆解企业与综合利用企业等通过多种形式,合作共建、共用废旧动力蓄电池回收渠道;鼓励车企通过回购、以旧换新、给予补贴等措施,提高新能源汽车所有人移交废旧动力蓄电池的积极性。
专业回收处理机构作为拆解主体最具优势。针对动力电池的回收问题,虽然国家已经出台了相关政策明确了采用生产者责任延伸制度,但是到底由谁来拆解回收电池材料对整个回收行业最有利呢? 第三方专业回收处理机构作为拆解回收电池材料的主体具有很明显的优势。电动汽车厂和单纯的动力电池组装厂作为拆解回收电池材料的主体存在三方面的问题:一是它们都不具备电池回收的经验和专业能力;二是不具备电池回收处理的专业技术装备;三是回收处理领域与汽车和电池行业相比是一个很小的微利行业。因此,大多数电动汽车企业和单纯的动力电池组装企业会选择和像格林美、邦普这样的第三方专业的回收处理机构进行合作,对废旧电池进行专业回收。虽然电池材料生产企业对电池材料的合成有比较深刻的理解,在技术上拥有一定的优势,但是这类企业没有专业的回收技术、设备和方法,其投入的成本将会很大。而第三方专业回收处理机构深耕锂电池回收和再生利用多年,拥有专业的回收技术、设备、方法、资质和回收渠道等优势。判断第三方专业回收处理机构更加适合作为拆解回收电池材料的主体。
生产者责任延伸制(EPR)在家电回收领域已取得成功经验。EPR 原则的核心要素包括:确立生产者的主体责任、多渠道回收、集中处理、资质许可、基金补贴。2012 年我国在电子废弃物拆解领域简历生产者责任延伸制,实施基金补贴制度。截至目前共有 5 批 109家处理企业列入废弃电器电子产品基金补贴企业名单,拨付基金补贴 107 余亿元。“四机一脑”年处理能力达到 1.5 亿台,回收拆解总量接近 3 亿台,年均处理量增速达到 58%,不规范拆解数量比例从 2012 年的 18.8%降至 2015 年的 0.2%。与此同时,前 8 大集团拆解量占比由 47%提升至 67%,产业集中程度提升,资源进一步向规范化的龙头企业积聚。
参考国外经验,电池回收网络主要由电池企业共建的行业协会和联盟组织建设。以日本为例,从 1994 年 10 月起,日本逐步建立起“蓄电池生产-销售-回收-再生处理”的电池回收利用体系。规定由汽车经销商负责向社会免费回收废旧汽车电池,而汽车电池生产商为废旧电池回收的主要负责人,生产商从经销商处收集废旧电池后,转交于废旧电池处理商(东京资源公司、关西触媒化学公司、野村兴产、住友金属等)进行循环利用,2000 年起政府给予生产企业相应的补贴。德国则是由电池生产厂家联合建立起一套收集系统——GRSBatteries,以基金会的形式存在,超过 3500 家电池制造商使用这个系统,他们给基金会捐款来作为电池回收系统日常运营费用。美国由政府建立电池回收网络,利用附加环境税的方式,通过消费者和电池生产企业共同出资作为政府回收资金的支持,废旧电池回收企业以协议价将提纯的原材料卖给电池生产企业。
生产厂商主导构建动力电池回收网络,4S 店和拆解中心两条回收渠道为主。动力电池的回收网络由承担主要责任的电池厂和整车厂主导构成。整车厂利用其 4S 店用以旧换新的形式从消费者那里回收动力电池,然后把废旧电池转运给专业的电池拆解回收企业,同时通知电池厂。报废汽车拆解企业拆解报废车辆后同样把动力电池转运给专业的电池拆解回收企业,同时通知电池厂。然后,专业的电池拆解回收企业对动力电池进行余能检测,把可梯次利用的电池转运给储能企业。其余的废旧电池全部进行回收再利用,循环利用合成的电池材料再给电池厂进行电池的装配。这种逆向的回收模式成本低,可行性高,但需要相关制度来完善各企业间的协同合作。
从行业发展趋势看,整个产业链上下游的联盟合作将显著加强。未来梯级利用与电池生产,再生利用与资源材料将融合发展,同时行业内企业需协同合作共建回收网络。我们认为,回收渠道是电池回收行业的核心竞争要素之一,而整车厂掌握与消费者联系密切的 4S 店,在建立回收渠道网络方面具备天然优势。落实生产者责任延伸制度,亦从政策层面明确了整车厂在回收渠道上的主导地位。第三方企业具有较好的回收工艺、先进的回收技术以及完整的废料处理体系,是目前市场上拆解回收的主要力量。未来,整车厂和电池厂大概率会选择有危废回收牌照资格的第三方回收企业合作,而危废回收的资质非常稀缺。我们看好具备回收技术和先发布局优势的大型正极材料厂商,与大型整车厂、大型电池厂绑定,整车厂负责构建回收渠道,正极材料厂商负责拆解、提取金属后再造电池材料,然后供应给电池厂,形成三方合作的循环生态。
从实际情况来看,2016 年的动力电池回收用于拆解部分不足两万吨,各类电池回收企业派系在废旧锂电池回收再利用方面绝大多数处于微盈利或平衡经营状态,因此动力电池回收和资源再生利用尚未得到较大的发展。然而近三年来各类电池回收企业派系均加大了在动力电池回收再利用方面的资本布局,这是国家、地方政策激励、市场竞争愈发激烈和近年来经济效益显著提升等多重因素影响产生的综合效果。
总体来说,目前动力电池回收市场的参与方可以分为四类。第一,以格林美、邦普为代表的第三方专业拆解机构。以格林美为例:其在 2016 年与东风襄旅、三星环新签订战略合作协议共同建立兴新源汽车供应价值链联盟,并且于 2017 年分别投资 5000 万元设立孙公司福建格林美、以 9 亿元增资荆门格林美用以拓展其动力电池回收与原料再造业务。第二,以比亚迪为代表的整车企业。比亚迪在 2015 年 9 月与格林美合作决定强强联手打造回收再利用闭环,在动力电池回收行业前景可期。第三,以国轩高科中航锂电为代表的电池厂商。国轩高科于 2017 年建成电池拆解资源回收中试线,并且成立“安徽金轩”、“甘肃金轩”主要从事动力锂电池回收及处理;中航锂电于 2014 年建立动力电池回收示范线,并且技术处于国际领先水平、获河南省 600 万元专项资金支持。第四,以厦门钨业、华友钴业、寒锐钴业为代表的电池材料厂商。厦门钨业于 2017 年 10 月公告拟向赣州豪鹏增资约 7885 万元成为其第一大股东,用以提高原料保障能力、打造完整闭环生态链;华友钴业分别出资 1.21亿元收购韩国锂电池循环利用公司股权、约 1844 万元收购台湾比伦生物科技股份有限公司来强化境外资源循环产业布局,同时在境内设立衢州华友资源再生科技有限公司用以开拓新的原材料供应渠道;寒锐钴业拟出资 1 亿元设立全资子公司赣州寒锐新能源技术有限公司,建设锂电池废料回收和湿法冶炼生产线项目。
自动化拆解是动力电池回收产业化的基础环节。在拆解环节,由于动力电池内部连接方式复杂且各不相同,目前自动化水平较低,还存在容易拆坏、引发安全事故以及拆解效率低下等三大问题。目前国内只有邦普等极少数企业自主研发了机械自动化拆解设备,尚不足以支撑起梯次利用的市场。2017 年 11 月,工信部将废旧动力电池自动化拆解成套装备纳入2017 年重大环保技术装备目录,要求技术指标达到单体进料 30 个/次,单体处理速度 60s/个,电芯脱出率97%等。我们认为,拆解设备是电池回收流程的头道设备,在此环节设立标准并进行扶持有助于在源头把控质量,提高后续分离材料的纯度和价值,进而提升经济性。检测和筛选环节是梯次利用的关键。由于回收动力电池的不一致性,进行梯次利用时需要对其的剩余使用价值和健康状态进行大量的检测,对于使用情况类似、可以成组的电池进行筛选。检测筛选环节需要综合应用软件技术、测控技术、制程工艺等,涉及光、机、电等跨行业多学科技术,技术门槛非常高,目前国内正处于起步阶段,如先导智能的子公司泰坦新动力、星云股份在业内具有先发优势,是国内锂电检测领域的龙头。
回收工艺基本成熟,三元材料回收价值高。废旧电池回收拆解的完整流程一般包括 4 个步骤:(1)电池的预处理;(2)电池材料的分选;(3)正极中金属的富集;(4)金属的分离提纯。每一步骤均包含多种处理方法,各有优缺点,综合利用各种方法对金属材料进行回收,金属的回收率和纯度基本均可达 90%以上。动力电池的回收拥有较高的技术门槛。废旧动力锂电池回收处理的整个过程包括放电、拆解、破碎、分选、除杂、元素合成等几十个复杂步骤,涉及物理、化学、材料、工程等多个交叉学科,技术复杂冗长。动力电池回收行业的核心技术,在于如何采用配方合适的化学溶剂将有效成分提取或萃取出来,重新做成电池原材料加以回收利用。但这些配方是动力电池企业的商业机密,电池回收工厂很难掌握。
《新能源汽车废旧动力蓄电池综合利用行业规范条件》明确规定从事废旧动力蓄电池回收业务的企业应当具备下列条件之一:1)电动汽车生产企业指定(或授权)的电动汽车售后服务商或其他机构;2)动力蓄电池生产企业指定(或授权)的电池销售商、动力蓄电池换电(或租赁)企业或其他机构;3)梯级利用企业或其指定(或授权)机构;4)具备动力蓄电池拆卸所需技术、设备、人员等相应条件的报废汽车回收拆解企业;5)其他符合条件的企业。而与《规范条件》配套的《管理暂行办法》明确提出将确定一份企业名单。只有满足《规范条件》的企业能被列入名单,并在工信部网站上公示。列入公告的企业名单将作为相关政策支持的参考依据。如果规范目录企业名单公布,没有进入目录的小企业将失去拆解资质,从而有利于行业中提早布局、技术和资金实力强的大型专业拆解机构。动力电池回收行业集中度将显著提升。从铅蓄电池回收行业集中度发展趋势可以发现:随着环保要求趋严,铅回收行业在国家推出相关制度后准入标准提升,整顿力度加强,大批不符规范的企业被关闭,全国保留下来的合法的、规模化、规范化的再生铅企业在 30 家左右,行业集中度大大提高,回收率高(目前整体回收率达到 95%)凸显铅价值量(毛利率+退税利润)。而相比于铅蓄电池回收,动力电池回收行业的回收渠道更加专业、行业整顿更加及时,再加上我国在动力电池行业大规模爆发之前,就较早提出了环保要求和回收率的要求,一开始就确立了行业进入门槛,因而不符合规范的小企业生存可能更加艰难、大型企业竞争优势更加明显,行业集中度提高的趋势也更为显著。